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In the past decade, the field of medical image analysis has 
grown exponentially, with an increased number of pattern 
recognition tools and an increase in data set sizes. These 
advances have facilitated the development of processes for 
high-throughput extraction of quantitative features that 
result in the conversion of images into mineable data and 
the subsequent analysis of these data for decision support; 
this practice is termed radiomics. This is in contrast to the 
traditional practice of treating medical images as pictures 
intended solely for visual interpretation. Radiomic data 
contain first-, second-, and higher-order statistics. These 
data are combined with other patient data and are mined 
with sophisticated bioinformatics tools to develop models 
that may potentially improve diagnostic, prognostic, and 
predictive accuracy. Because radiomics analyses are in-
tended to be conducted with standard of care images, it is 
conceivable that conversion of digital images to mineable 
data will eventually become routine practice. This report 
describes the process of radiomics, its challenges, and its 
potential power to facilitate better clinical decision mak-
ing, particularly in the care of patients with cancer.
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assessment of prognosis, prediction of 
response to treatment, and monitoring 
of disease status.

The mining of radiomic data to 
detect correlations with genomic pat-
terns is known as radiogenomics, and 
it has elicited especially great interest 
in the research community. To avoid 
confusion, it should be noted that the 
term radiogenomics is also used in the 
field of radiation oncology to describe 
whole-genome analyses aimed at de-
termining the genetic causes of varia-
tions in radiosensitivity (4,5). Hence-
forward in this article, we will refer to 
radiogenomics only as the combination 
of radiomic features with genomic data 
for the purpose of enabling decision 
support. The value of radiogenomics 
stems from the fact that while virtu-
ally all patients with cancer undergo 
imaging at some point and often mul-
tiple times during their care, not all of 
them have their disease genomically 
profiled. Furthermore, when genomic 
profiling is performed, it is done one 
time at one location and is susceptible 

subsequently mine the data for hypo-
thesis generation, testing, or both. Ra-
diomics is designed to develop decision 
support tools; therefore, it involves 
combining radiomic data with other 
patient characteristics, as available, to 
increase the power of the decision sup-
port models. As radiomics is intended 
to extract maximal information from 
standard of care images, the creation of 
databases that combine vast quantities 
of radiomics data (and ideally other 
complementary data) from millions of 
patients is foreseeable.

Although radiomics can be applied 
to a large number of conditions, it is 
most well developed in oncology be-
cause of support from the National 
Cancer Institute (NCI) Quantitative 
Imaging Network (QIN) and other ini-
tiatives from the NCI Cancer Imaging 
Program. As described in subsequent 
sections of this article, the potential of 
radiomics to contribute to decision sup-
port in oncology has grown as knowl-
edge and analytic tools have evolved. 
Quantitative image features based on 
intensity, shape, size or volume, and 
texture offer information on tumor phe-
notype and microenvironment (or hab-
itat) that is distinct from that provided 
by clinical reports, laboratory test re-
sults, and genomic or proteomic assays. 
These features, in conjunction with the 
other information, can be correlated 
with clinical outcomes data and used 
for evidence-based clinical decision 
support (Fig 1). Radiomics appears 
to offer a nearly limitless supply of 
imaging biomarkers that could poten-
tially aid cancer detection, diagnosis, 
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Advances in Knowledge

nn Radiomics is defined as the con-
version of images to higher-
dimensional data and the subse-
quent mining of these data for 
improved decision support.

nn Radiomics has been initiated in 
oncology studies, but it is poten-
tially applicable to all diseases.

nn Radiomics can be performed with 
tomographic images from CT, 
MR imaging, and PET studies.

nn Image features are extracted 
from volumes of interest, which 
can be either entire tumors or 
defined subvolumes within 
tumors, known as habitats.

nn Radiomics is a new field, and 
there are substantial challenges 
to its implementation in a clinical 
setting.

Implications for Patient Care

nn Radiomics is designed to be used 
in decision support of precision 
medicine.

nn Although relationships between 
radiomics and outcome are 
defined with populations, they 
can be applied to individual 
patients.

nn Radiomic analysis promises to 
increase precision in diagnosis, 
assessment of prognosis, and 
prediction of therapy response.

W ith high-throughput computing, 
it is now possible to rapidly 
extract innumerable quantita-

tive features from tomographic images 
(computed tomography [CT], magnetic 
resonance [MR], or positron emission 
tomography [PET] images). The con-
version of digital medical images into 
mineable high-dimensional data, a 
process that is known as radiomics, is 
motivated by the concept that biomed-
ical images contain information that 
reflects underlying pathophysiology and 
that these relationships can be revealed 
via quantitative image analyses. Al-
though radiomics is a natural extension 
of computer-aided diagnosis and detec-
tion (CAD) systems, it is significantly 
different from them. CAD systems are 
usually standalone systems that are 
designated by the Food and Drug Ad-
ministration for use in either the detec-
tion or diagnosis of disease (1). Early 
successes of CAD have been greatest 
in breast cancer imaging (2,3). Un-
like CAD systems, which are directed 
toward delivering a single answer (ie, 
presence of a lesion or cancer), ra-
diomics is explicitly a process designed 
to extract a large number of quantita-
tive features from digital images, place 
these data in shared databases, and 
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on multiple levels: One multisection 
or three-dimensional image from one 
patient may easily contain millions of 
voxels. Also, one tumor (or other ab-
normal entity) may contain hundreds 
of measurable features describing size, 
shape, and texture.

Radiomics analyses epitomize the 
pursuit of precision medicine, in which 
molecular and other biomarkers are 
used to predict the right treatment 
for the right patient at the right time. 
The availability of robust and validated 
biomarkers is essential to move preci-
sion medicine forward (9). Around the 
world, efforts are underway to improve 
the availability of such biomarkers, 
and in the United States, the effort is 
most notably through The Precision 
Medicine Initiative (10,11). This ini-
tiative will provide funding for a new 
model of patient-powered research 
that promises to accelerate biomedical 
discoveries and provide clinicians with 
new tools, knowledge, and therapies 
that enable more precise personalized 
care.

A major strength of a radiomics 
approach for cancer is that digital ra-
diologic images are obtained for almost 
every patient with cancer, and all of 
these images are potential sources for 

and prognosis. For example, research 
has already shown the capacity of ra-
diomics analyses to help distinguish 
prostate cancer from benign prostate 
tissue or add information about pros-
tate cancer aggressiveness (6). In the 
evaluation of lung cancer and in the 
evaluation of glioblastoma multiforme, 
radiomics has been shown to be a tool 
with which to assess patient prognosis 
(7). The tools developed for radiomics 
can help in daily clinical work, and 
radiologists can play a pivotal role in 
continuously building the databases 
that are to be used for future decision 
support.

The suffix -omics is a term that orig-
inated in molecular biology disciplines 
to describe the detailed characteriza-
tion of biologic molecules such as DNA 
(genomics), RNA (transcriptomics), 
proteins (proteomics), and metabolites 
(metabolomics). Now, the term is also 
being used in other medical research 
fields that generate complex high-di-
mensional data from single objects or 
samples (8). One desirable character-
istic of -omics data is that these data 
are mineable and, as such, can be used 
for exploration and hypothesis genera-
tion. The -omics concept readily applies 
to quantitative tomographic imaging 

to sampling error. Thus, radiogenom-
ics has two potential uses, which will 
be described in detail in the Examples 
of Radiomics Results section. First, a 
subset of the radiomic data can be used 
to suggest gene expression or mutation 
status that potentially warrants further 
testing. This is important because the 
radiomic data are derived from the 
entire tumor (or tumors) rather than 
from just a sample. Thus, radiomics 
can provide important information re-
garding the sample genomics and can 
be used for cross-validation. Second, 
a subset of radiomic features is not 
significantly related to gene expression 
or mutational data and, hence, has the 
potential to provide additional, inde-
pendent information. The combination 
of this subset of radiomic features with 
genomic data may increase diagnostic, 
prognostic, and predictive power.

While radiomics primarily grew 
out of basic research, lately it has also 
elicited interest from those in clinical 
research, as well as those in daily clin-
ical practice. For a clinical radiologist, 
radiomics has the potential to help 
with the diagnosis of both common and 
rare tumors. Visualization of tumor 
heterogeneity may prove critical in the 
assessment of tumor aggressiveness 

Figure 1

Figure 1:  Flowchart shows the process of radiomics and the use of radiomics in decision support. Patient work-up requires information from disparate sources to 
be combined into a coherent model to describe where the lesion is, what it is, and what it is doing. Radiomics begins with acquisition of high-quality images. From 
these images, a region of interest (ROI) that contains either the whole tumor or subregions (ie, habitats) within the tumor can be identified. These are segmented with 
operator edits and are eventually rendered in three dimensions (3D). Quantitative features are extracted from these rendered volumes to generate a report, which is 
placed in a database along with other data, such as clinical and genomic data. These data are then mined to develop diagnostic, predictive, or prognostic models for 
outcomes of interest.
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each with its own challenges (24,25). 
These steps are shown in Figure 1 
and include: (a) acquiring the images, 
(b) identifying the volumes of interest 
(ie, those that may contain prognostic 
value), (c) segmenting the volumes (ie, 
delineating the borders of the volume 
with computer-assisted contouring), (d) 
extracting and qualifying descriptive fea-
tures from the volume, (e) using these to 
populate a searchable database, and (f) 
mining these data to develop classifier 
models to predict outcomes either alone 
or in combination with additional infor-
mation, such as demographic, clinical, 
comorbidity, or genomic data. We will 
discuss these processes in turn.

Image Acquisition
Modern CT, MR imaging, and com-
bined PET/CT units allow for wide 
variations in acquisition and image re-
construction protocols, and standardi-
zation of these protocols across medi-
cal imaging centers is typically lacking. 
This is generally not a problem in the 
routine identification of radiologic fea-
tures used in clinical practice. However, 
when images are analyzed numerically 
to extract meaningful data, variations 
in acquisition and image reconstruction 
parameters can introduce changes that 
are not due to underlying biologic ef-
fects. This has been well recognized in 
the emerging field of quantitative imag-
ing, in which the intent is to generate 
medical images with describable limits 
of bias and variance. In other words, it 
is not sufficient to report a number or a 
set of numbers derived from images; in-
stead, we must also be able to provide 
error bars, as is done with every other 
credible laboratory measurement.

There have been multiple efforts to 
advance quantitative imaging, includ-
ing definition of acquisition and recon-
struction standards, over the past 15 
years (26,27). The QIN is a cooperative 
network initiated by the NCI with the 
goal of developing quantitative imaging 
methods that improve the effectiveness 
of clinical trials of new cancer ther-
apies (28). The QIN is a major initia-
tive from the NCI and can be regarded 
as the leading edge of new imaging 
methods, including radiomics. Also, the 

tumor biology. A central hypothesis driv-
ing radiomics research is that radiomics 
has the potential to enable quantitative 
measurement of intra- and intertumoral 
heterogeneity. Moreover, radiomics of-
fers the possibility of longitudinal use in 
treatment monitoring and optimization 
or in active surveillance. Although such 
applications of radiomics have yet to be 
explored in depth, they may provide the 
most value going forward.

It should be emphasized that ra-
diomic and radiogenomic analyses can 
be used to identify correlations, not 
causes; thus, they are not expected to 
enable definitive assessment of genetic 
or other contents of tissue through im-
aging alone. However, correlation of ra-
diomic data with genomic or other -omic 
data could inform not only the decision 
about whether to test for certain gene 
alterations in biopsy samples but also 
the choice of biopsy sites. It also could 
provide confirmatory information to 
support histopathologic findings. This 
is important, as it is estimated that the 
error rate of cancer histopathology can 
be as high as 23% (20–23). Errors in 
histopathology are due to both sampling 
errors and observer variability; thus, 
there is a great need for additional quan-
titative diagnostic information.

We believe that radiomics is rapidly 
expanding beyond a boutique research 
area and is emerging as a translational 
technology. Hence, this is an appropri-
ate time to begin to establish bench-
marks for data extraction, analysis, 
and presentation. The goal of this 
report is to introduce the practice of 
radiomics to a wide audience of prac-
ticing clinicians, including radiologists, 
to engage a broader community in es-
tablishing benchmarks. In doing so, we 
will describe the processes involved in 
radiomics and the unique information 
it offers, as well as its challenges and 
their potential solutions. We will also 
highlight some of the more recent find-
ings of importance and, finally, offer a 
vision for radiomics of the future.

Process of Radiomics

While conceptually simple, the practice 
of radiomics involves discrete steps, 

radiomics databases (Table 1). In the 
United States alone, there are approx-
imately 1.6 million new cancer cases 
every year (12). Most of these patients 
will undergo multiple CT, MR imaging, 
and PET examinations. In the future, 
it is possible that image interpretation 
for all these studies will be augmented 
by using radiomics, building an unprec-
edented source of big data that will 
expand the potential for discovering 
helpful correlations. While radiomics 
will allow better characterization of pa-
tients and their diseases through new 
applications of genomics and improved 
methods of phenotyping, it will also add 
to the challenges of data management, 
as we will discuss later in this article.

Radiomics offers important advan-
tages for assessment of tumor biology. 
It is now appreciated that most clinically 
relevant solid tumors are highly hetero-
geneous at the phenotypic, physiologic, 
and genomic levels (13–15) and that 
they continue to evolve over time. In this 
emerging era of targeted therapies, it 
is notable that most responses are not 
durable and that benefit is generally 
measured in months, not years. For ex-
ample, this is the case with (a) gefitinib 
in patients with epidermal growth factor 
receptor–mutated lung cancer (16), (b) 
trastuzamab in those with human epider-
mal growth factor receptor 2 (or HER2) 
overexpressing breast cancer (17), and 
(c) vemurafenib in those with B-Raf–mu-
tated melanoma (18). Genomic hetero-
geneity within tumors and across meta-
static tumor sites in the same patient is 
the major cause of treatment failure and 
emergence of therapy resistance (19). 
Thus, precision medicine requires not 
only in vitro biomarkers and companion 
diagnostics but also spatially and tem-
porally resolved in vivo biomarkers of 

Table 1

Important Aspects of Radiomics

Aspect

Uses standard-of-care images
Interrogates the entire tumor
Can be used to interrogate stroma
Enables longitudinal monitoring
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Volume of Interest Identification
Identification of tissue volumes of prog-
nostic value is the core of the practice 
of radiology in oncology. Although at the 
time of diagnosis cancer can be detect-
ed at one tumor site or multiple tumor 
sites, most patients with cancer metas-
tasis have multiple lesions. In either sce-
nario, we need to identify tumors and 
suspected tumors as volumes of interest. 
However, detailed analysis of subvolumes 
within tumors (the manifestations of tu-
mor heterogeneity) that may have prog-
nostic value generally are not captured in 
a radiology report because of the spatial 
and contrast limitations of digital images. 
While heterogeneity is not included in 
Response Evaluation Criteria in Solid 
Tumors, version 1.1 (32), a few texture 
descriptors have been incorporated in 
more complex diagnostic imaging report-
ing and data systems, such as the Breast 
Imaging Reporting and Data System 
(BI-RADS) (33), the Prostate Imaging 
Reporting and Data System (PI-RADS) 
(34), and the Lung Imaging Reporting 
and Data System (Lung-RADS) (35). In 
the practice of radiomics, so-called sub-
volumes of interest can be captured and 
added to the analyses. The basic philoso-
phy, which has its foundation in process 
engineering, is to capture as much data 
as possible at the front end and use 
downstream database mining to identify 
the features with the highest prognostic 
value. This is driven by the knowledge 
that attempting to filter the data at input 
would be inefficient and would presup-
pose knowledge regarding the value of 
the features in classifier models before 
they were tested.

Recently, the concept of using image 
data to identify physiologically distinct 
regions within lesions has been de-
scribed (36). In this approach, images 
with different acquisition parameters 
(eg, contrast material–enhanced T1-
weighted MR imaging, diffusion-weight-
ed, and fluid attenuation sequences) can 
be combined to yield regions with spe-
cific combinations of quantitative image 
data. Notably, when this is performed, 
the combinations reside in spatially 
explicit regions of the tumors (Fig 2). 
We have termed these regions habitats 
because they represent physiologically 

100 participants were involved in the 
creation of the initial QIBA fluorode-
oxyglucose PET/CT profile, which was 
released in 2014 (30,31). The American 
Association of Physicists in Medicine is 
providing technical guidelines in quanti-
tative imaging in the form of modality-
dependent reports on imager operation 
and testing. Finally, relevant profes-
sional societies, such as the American 
College of Radiology, RSNA, the Soci-
ety of Nuclear Medicine and Molecular 
Imaging, the International Society of 
Magnetic Resonance in Medicine, and 
the World Molecular Imaging Society, 
are increasingly including aspects of the 
bedrock of quantitative imaging in their 
guidelines.

Radiological Society of North America 
(RSNA) and the National Institute for 
Biomedical Imaging and Bioengineer-
ing have sponsored the Quantitative 
Imaging Biomarkers Alliance (QIBA), 
which is a major effort in quantitative 
imaging (29). The goal of QIBA is to 
industrialize quantitative imaging by 
bringing together the entire spectrum 
of groups involved in its development 
and implementation. The main product 
of QIBA is a new type of a document 
termed a profile that provides a con-
sensus on the measurement accuracy of 
a quantitative imaging biomarker for a 
specific use and the requirements and 
procedures needed to achieve this level 
of measurement accuracy. More than 

Figure 2

Figure 2:  Habitats in a patient with glioblastoma multiforme. Habitats were 
defined by combining unenhanced and contrast-enhanced T1-weighted, 120-
msec echo time T2-weighted, and fluid-attenuated inversion recovery (FLAIR) 
images. Data from each acquisition were sorted into low and high values 
with automated histogram analyses, yielding a potential for eight different 
combinations. In practice, only four distinct combinations were observed. They 
correspond to the red (low T1, high T2 and FLAIR), yellow (low T1 and T2, high 
FLAIR), blue (High T1 and FLAIR, low T2), and green (high T1, low FLAIR and T2) 
areas. Notably, while the identities of individual voxels were determined math-
ematically, they spatially clustered into contiguous regions reflecting different 
physiologic microenvironments. (Image courtesy of R. A. Gatenby.)
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are referred to some excellent reviews 
on the subject, with specific reference 
to intratumoral heterogeneity (42,43). 
Higher-order statistical methods im-
pose filter grids on the image to extract 
repetitive or nonrepetitive patterns. 
These include fractal analyses, wherein 
patterns are imposed on the image and 
the number of grid elements containing 
voxels of a specified value is computed 
(44); Minkowski functionals, which as-
sess patterns of voxels whose intensity is 
above a threshold (45); wavelets, which 
are filter transforms that multiply an 
image by a matrix of complex linear or 
radial “waves”; and Laplacian transforms 
of Gaussian bandpass filters that can ex-
tract areas with increasingly coarse tex-
ture patterns from the image (46).

There has been a sustained effort 
to identify, define, and extract more 
agnostic features. The first such study 
used 182 texture features in combina-
tion with 22 semantic features to de-
scribe CT images of lung cancer (24). 
This was followed by a 442-member 
feature set that also contained wavelets 
(47). More recently, this has been ex-
panded to 662 features that also con-
tain Laplace transforms of Gaussian 
fits (46) and 522 features that include 
texture and fractal dimension features 
(48). These features potentially can 
be extracted from individual habitats, 
thereby yielding thousands of data ele-
ments with which to describe each vol-
ume of interest, with many volumes of 
interest available in each patient.

Thus, it is readily apparent that the 
number of descriptive image features 

Table 2

Examples of Semantic and Agnostic 
Features of Radiomics

Semantic Agnostic

Size Histogram (skewness,  
  kurtosis)

Shape Haralick textures
Location Laws textures
Vascularity Wavelets
Spiculation Laplacian transforms
Necrosis Minkowski functionals
Attachments or  

lepidics
Fractal dimensions 

while agnostic features are those that 
attempt to capture lesion heterogeneity 
through quantitative descriptors.

Semantic features.—Although se-
mantic features are commonly used by 
radiologists to describe lesions, in this 
article we refer to their quantification 
with computer assistance. With the 
foreknowledge that semantic features 
are of prognostic value, early investiga-
tions in radiomics developed radiology 
lexicons, much the same as BI-RADS, 
PI-RADS, and Lung-RADS attempt to 
do. A watershed article in this regard 
came from Segal et al, who, in an early 
example of radiogenomics, used a finite 
series of radiologist-scored quantitative 
features to predict gene expression pat-
terns in hepatocellular carcinoma (40). 
This approach continues to have high 
value, and there is a movement to cap-
ture such semantic data with the aid of 
computers to achieve higher interread-
er agreement, faster throughput, and 
lower variance.

Agnostic features.—Agnostic ra-
diomic features on an image are mathe-
matically extracted quantitative descrip-
tors, which are generally not part of 
the radiologists’ lexicon. These can be 
divided into first-, second-, or higher-
order statistical outputs. First-order sta-
tistics describe the distribution of values 
of individual voxels without concern for 
spatial relationships. These are generally 
histogram-based methods and reduce a 
region of interest to single values for 
mean, median, maximum, minimum, 
and uniformity or randomness (entropy) 
of the intensities on the image, as well 
as the skewness (asymmetry) and kurto-
sis (flatness) of the histogram of values. 
Second-order statistical descriptors 
generally are described as “texture” fea-
tures; they describe statistical interre-
lationships between voxels with similar 
(or dissimilar) contrast values. Texture 
analysis of images was first introduced in 
1973 by Haralick et al (41). In radiomics, 
texture analyses can readily provide a 
measure of intratumoral heterogeneity. 
In practice, there are dozens of methods 
and multiple variables that can be used 
to extract texture features, resulting 
in hundreds of values—far too many 
to elaborate on in this article. Readers 

distinct volumes, each with a specific 
combination of blood flow, cell density, 
necrosis, and edema. Additional ra-
diomic features can be extracted from 
each of these habitats to obtain highly 
granular descriptions of cancer lesions. 
The distribution of these habitats in pa-
tients with glioblastoma multiforme, for 
example, can enable us to discriminate 
between cancers that progress quickly 
(,400 days of survival) and those that 
are more indolent (37). Furthermore, 
these habitats change after treatment 
(eg, treatment with radiation and tem-
azolamide), and the pattern of change 
has been observed to be predictive of 
response.

Segmentation
Segmentation is the most critical, chal-
lenging, and contentious component 
of radiomics. It is critical because the 
subsequent feature data are gener-
ated from the segmented volumes. It is 
challenging because many tumors have 
indistinct borders. It is contentious be-
cause there are ongoing debates over 
whether to seek ground truth or re-
producibility and how much to rely on 
manual or automatic segmentation. 
However, a consensus is emerging that 
truth is elusive and that optimum re-
producible segmentation is achievable 
with computer-aided edge detection 
followed by manual curation. It is well 
recognized that interoperator variabil-
ity of manually contoured tumors is 
high (38,39). Segmentation of normal 
structures, such as skeletal elements 
and organs, can now be achieved with 
full automation. However, any disease, 
especially cancer, requires operator in-
put because of inter- and intrasubject 
morphologic and contrast heterogene-
ity at the initial examination.

Feature Extraction and Qualification
The heart of radiomics is the extraction 
of high-dimension feature data to quan-
titatively describe attributes of volumes 
of interest. In practice, “semantic” and 
“agnostic” features are the two types 
of features extracted in radiomics.  
(Table 2). Semantic features are those 
that are commonly used in the radiology 
lexicon to describe regions of interest, 



Radiology: Volume 278: Number 2—February 2016  n  radiology.rsna.org	 569

SPECIAL REPORT: Radiomics	 Gillies et al

second-, and higher-order textures). The 
classifier models can then be built with 
the two or three highest-priority fea-
tures in each class. In the final analysis, 
the value of feature sets is determined 
by their contribution to classifier models 
created through database mining.

Building Databases: Numbers Are King, 
Quality Is Queen
In radiomics and elsewhere, the power 
of the predictive classifier model is de-
pendent on having sufficient data. It has 
been our experience that a reasonable 
rule of thumb is that 10 samples (pa-
tients) are needed for each feature in a 
model based on binary classifiers. Fur-
thermore, the best models are those that 
can accommodate additional clinical or 
genomic covariates, and this increases 
the need for large high-quality data sets. 
Radiomics can be performed with as 
few as 100 patients, although larger data 
sets provide more power. It is time con-
suming to capture and curate large high-
quality sets from retrospective data. For 
example, in a recent study, we curated a 
data set of patients with non–small cell 
lung cancer adenocarcinoma who had 
gene expression profiles (46). Within a 
local database, 285 such patients were 
readily identified as potential candidates 
for such a cohort study. The need to 
validate these via chart and pathology 
review required 188 hours and resulted 
in the loss of 50 patients from the study 
cohort because of missing data or equiv-
ocal histopathologic findings. When his-
topathologic findings were equivocal, 
a pathologist reviewed the slides; this 
only added to the curation time. Fur-
ther validation via picture archiving and 
communication system review of images 
captured with standardized acquisition 
and reconstruction parameters required 
94 hours and resulted in the attrition of 
an additional 92 patients. Segmentation 
and extraction of features into the data-
base required an additional 145 hours. 
Thus, the curation of a data set of 143 
patients required an initial cohort of 285 
patients (approximately 50% attrition) 
and required 430 hours of processing, 
or approximately 3 hours of process-
ing per patient. As these patients were 
not filtered for medical or demographic 

off-diagonal elements. Clusters of highly 
correlated features can be collapsed into 
one representative feature, usually the 
one with the largest intersubject vari-
ability or highest dynamic range. Figure 
3 also provides a conceptual bridge to 
the other -omics fields, where the data 
content of the images is indicated by the 
false-color map. If available, test-retest 
data are also extremely helpful, as they 
can help prioritize features on the basis 
of their reproducibility (51,52). A fur-
ther level of prioritization, described by 
Aerts et al (47), is to rank order features 
within separate categories representing 
different agnostic and semantic classes 
of features (eg, size, shape, and first-, 

can approach the complexity of data 
obtained with gene expression profiling, 
which commonly yields information on 
more than 30 000 different sequences. 
With such large complexity, there is 
a danger of overfitting analyses, and 
hence, dimensionality must be reduced 
by prioritizing the features (49,50). 
The most systematic approach is to 
first identify features that may be re-
dundant (ie, those that are highly cor-
related with one another). Figure 3 is 
a covariance matrix of 219 features ex-
tracted from CT scans in 143 patients 
with non–small cell lung cancer. Those 
features that are highly correlated (r 2 . 
0.95) with each other are shown as red 

Figure 3

Figure 3:  Covariance matrix of radiomic features. A total of 219 features 
were extracted from each non–small cell lung cancer tumor in 235 patients. 
Across all tumors, each feature was individually compared with all other fea-
tures by using regression analysis, thereby generating correlation coefficients 
(R 2 ). Individual features were then clustered and plotted along both axes, and 
R 2 is shown as a heat map, with areas of high correlation (R 2 . 0.95) shown 
in red. Thus, each of the red squares along the diagonal contains a group of 
features that are highly correlated with one another and are thus redundant. 
For data analysis, one feature was chosen to be representative of each of these 
groups. The representative feature chosen was the one that had the highest 
natural biologic range (interpatient variability) across the entire patient data set, 
with the explicit assumption that features that show the highest interpatient 
variability will be the most informative. (Image courtesy of Y. Balagurunathan.)
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Furthermore, these analyses could be 
used to distinguish between two differ-
ent forms of Gleason score 7 disease 
(4+3 vs 3+4) with 92% accuracy (53).

Tumor Prognosis
Seminal radiogenomic studies were the 
first to show a relationship between 
quantitative image features and gene 
expression patterns in patients with 
cancer (40,54,55). In the first of these 
studies, the investigators compared 
semantic radiologist-defined features 
extracted from contrast-enhanced CT 
images in patients with hepatocellular 
carcinoma to gene expression patterns 
by using machine learning with a neu-
ral network. They found that combi-
nations of 28 imaging traits could be 
used to reconstruct 78% of the global 
gene expression profiles, which in turn 
were linked to cell proliferation, liver 
synthetic function, and patient prog-
nosis (40). In a subsequent study and 
with a similar approach, the investiga-
tors compared image features extracted 
from MR images to predict global gene 
expression patterns in patients with 
glioblastoma multiforme (54). They 
found that an “infiltrative” imaging phe-
notype was associated with significantly 
shorter survival (54).

In patients with lung cancer, there 
is incontrovertible evidence for intratu-
moral heterogeneity on lung CT images 
(Fig 5). These heterogeneities can be 
captured with features such as spicu-
lation or entropy gradients. Grove et 
al found these measures to be strong 
prognostic indicators in patients with 
early-stage lung cancer (P , .01) (56). 
A study by Aerts et al (47) showed that 
a radiomic signature could be used to 
predict outcome in completely inde-
pendent cohorts of patients with lung 
cancer from two separate institutions. 
Further, this same signature could be 
applied to cohorts of patients with head 
and neck cancer with equivalent prog-
nostic power. Notably, the signature 
was comprised of the top features from 
four classes (size, shape, texture, and 
wavelets) that were prioritized from a 
database of 442 features by using test-
retest reproducibility and intersubject 
range. This study and others like it 

progression-free survival and disease-
free survival or recurrence; however, 
these data are not readily available 
and require a dedicated abstraction ef-
fort with chart review. Hence, there is 
a pressing need to capture such data 
and to share data across institutions 
to accumulate sufficient numbers for 
statistical power. Such data sharing is 
a major initiative of the QIN, whose 
members are committed to depositing 
well-curated data sets into The Cancer 
Imaging Archive for public and private 
data mining efforts.

Examples of Radiomics Results

In the past 10 years, radiomics and ra-
diogenomics research in tomographic 
imaging (CT, MR imaging, and PET) 
has increased dramatically. Two well-
written and relatively recent reviews 
describe some of the advances through 
2014 (42,43). In the subsequent sec-
tion, we will highlight selected find-
ings, some of which are very recent, 
that show the potential of radiomics to 
substantially aid clinical care in several 
areas.

Enabling Diagnosis
In a study of 147 men with biopsy-prov-
en prostate cancer, Wibmer et al (6) 
showed that Haralick texture analysis 
has the potential to enable differenti-
ation of cancerous from noncancerous 
prostate tissue on both T2-weighted 
MR images and apparent diffusion co-
efficient (ADC) maps derived from dif-
fusion-weighted MR images (Fig 4). In 
the peripheral zone of the prostate, all 
five features assessed (entropy, inertia, 
energy, correlation, and homogeneity) 
differed significantly between benign 
and cancerous tissue on both types of 
images; however, in the transition zone, 
significant differences were found for 
all five features on ADC maps and for 
two features (inertia and correlation) 
on T2-weighted images. In a follow-up 
study, these features were used to au-
tomatically compute Gleason grade and 
were found to enable discrimination 
between cancers with a Gleason score 
of 6 (3+3) and those with a Gleason 
score of 7 of more with 93% accuracy. 

issues, there was no selection bias. In 
the future, capturing images and other 
data prospectively and with higher qual-
ity and standards should reduce data 
attrition and make the process more 
efficient.

Classifier Modeling and Data Sharing
Once large high-quality and well-curat-
ed data sets are available, they can be 
used for data mining, which refers to 
the process of discovering patterns in 
large data sets. This process can use 
artificial intelligence, machine learn-
ing, or statistical approaches. At one 
end, these include both supervised 
and nonsupervised machine learning 
approaches, such as neural networks, 
support vector machines, or Bayesian 
networks. Although these approaches 
use a priori knowledge through train-
ing sets, they are agnostic in that they 
make no assumptions about the mean-
ing of the individual features. Hence, all 
features are treated with equal weight 
at the initiation of learning. At the 
other end of the data-mining spectrum 
are hypothesis-driven approaches that 
cluster features according to predefined 
information content. While both of 
these approaches have merit, the best 
models are those that are tailored to 
a specific medical context and, hence, 
start out with a well-defined endpoint.

Ideally, robust models accommo-
date patient features beyond imaging. 
Covariates include genomic profiles (ex-
pression, mutation, polymorphisms), 
histology, serum markers, patient his-
tories, and biomarkers that are quali-
fied for the specific-use case (Fig 1). In 
practice, not all information is available 
for all patients; hence, models should 
also be designed to accommodate 
sparse data. As mentioned previously, 
the power of the model is entirely de-
pendent on the size and quality of the 
data within the database. Quality de-
pends not only on the image acquisi-
tion conditions but also on the avail-
ability and reliability of covariates. For 
example, overall survival is a common 
endpoint for many studies, but this 
includes death from all causes, which 
may not be related to the disease being 
studied. More exact endpoints include 
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seven were related to gene expression. 
When gene expression was assessed via 
pathways, approximately half of the im-
aging features showed strong correla-
tion to genomics. These analyses show 
that power for predicting gene expres-
sion patterns, outcomes, and staging of 
gliomas can be significantly increased 
with radiomics-based approaches.

Recently, Vignati et al performed a 
thorough prospective radiomic analysis 
of diffusion- and T2-weighted MR im-
aging examinations in 49 patients with 
prostate cancer (58). Agnostic features 
extracted from T2-weighted images and 
ADC maps were compared with more 
traditional ADC cutoff metrics to test 
the hypothesis that textures could help 
differentiate between men with a path-
ologic Gleason score of 6 and those 
with a pathologic Gleason score of 7 
or higher. This is an important cut-
off, as men with a pathologic Gleason 
score of 6 may be candidates for active 
surveillance. For standard ADC cutoff 
metrics, the area under the receiver 
operator characteristic curve ranged 
from 0.82 to 0.85. When ADC and T2 
maps were analyzed for heterogeneity, 
the area under the curve improved to 
impressive values of 0.92 and 0.96, 
respectively. Although this study may 
have been underpowered, it shows the 
potential value of quantitative analysis 
of tumor heterogeneity in assessing tu-
mor aggressiveness and informing ma-
jor clinical decisions, such as whether 
to treat the cancer at all. Of note, other 
investigators have also found entropy 
determined from ADC maps to be sig-
nificantly associated with the pathologic 
Gleason score, even after controlling 
for the median ADC (6,53).

Treatment Selection
In a seminal study, Kuo et al identified 
hepatocellular carcinoma imaging phe-
notypes that correlated with a doxo-
rubicin drug response gene expression 
program (55). Their results suggested 
that radiogenomic analyses could be 
used to guide the selection of therapy 
for individual tumors. More recently, 
a study of 58 women who underwent 
treatment for locally advanced breast 
cancer suggested that texture analysis 

transfer coefficient maps from dynamic 
contrast-enhanced MR images could 
be used to distinguish high- and low-
grade gliomas with much higher sta-
tistical power (P , .00005) than could 
median transfer coefficient maps alone 
(P = .005). In a more recent study, Ge-
vaert et al extracted a large number of 
semantic and agnostic features in 55 
patients with glioma who had under-
gone gene expression profiling (57). 
The feature set was then filtered for re-
producibility, yielding 18 features that 
were assessed in three distinct habitats. 
Of the agnostic features, most could be 
correlated with the semantic features; 
three of 54 were related to survival, and 

demonstrate the potential of radiomics 
for the identification of a general prog-
nostic imaging phenotype existing in 
several forms of cancer.

It is well known in the radiology 
community that contrast enhancement 
at MR imaging is often heterogeneous, 
with complex patterns. In a landmark 
article, Rose et al (44) analyzed the 
pattern of enhancement on dynamic 
contrast-enhanced MR images in sim-
ulations, phantoms, and 23 patients 
with glioma by using second-order and 
higher statistical measures to repre-
sent enhancement heterogeneity. They 
convincingly showed that complex 
measures of texture heterogeneity in 

Figure 4

Figure 4:  Application of texture analysis to T2-weighted MR images and ADC maps of pros-
tate cancer. A lesion in the transition zone is barely discernible on the T2-weighted image (top 
left) and has higher conspicuity on the ADC map (top right). Texture features were computed on 
a per-voxel basis (using a 5 3 5 3 1 pixel window) from manually segmented regions of inter-
est identifying the normal peripheral zone (outlined in blue) and cancer (outlined in red). From 
the computed texture features, a machine learning method was applied to distinguish between 
normal and cancerous structures and to stratify the Gleason patterns. Heat map images show 
clear differences between healthy tissue and cancer and depict intratumoral heterogeneity that 
may be useful in assessing tumor aggressiveness and informing fused MR imaging–ultrasonog-
raphy biopsy.
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lack of standards for validating results, 
incomplete reporting of results, and un-
recognized confounding variables in the 
databases used, particularly if data are 
derived retrospectively. Hence, as with 
any biomarker study, a retrospective 
radiomics investigation must be vali-
dated against a completely independent 
data set, preferably from another insti-
tution. Furthermore, the most rigorous 
biomarker qualification requires a pro-
spective multicenter trial wherein the 
biomarker is one of the primary end-
points (62,63).

While standardized tools for geno-
mic profiling (GenomeDx for prostate 
cancer [GenomeDx Biosciences, San 
Diego, Calif], Oncotype Dx for breast 
cancer [Genomic Health, Redwood 
City, Calif]) have been developed, they 
are not universally agreed upon or ap-
plied across medical centers, hamper-
ing efforts to share data and reproduce 
results. Studies have documented these 
problems in biomedical research gener-
ally and in molecular-targeted drug de-
velopment specifically. A 2009 analysis 
of biomedical research reports found 
that at least 50% of studies were too 
poor, insufficient, or incomplete to be 
usable (64). Scientists at Bayer Health-
Care (Leverkusen, Germany) reported 
that they were able to successfully re-
produce the published results from only 
a quarter of 67 seminal studies (65,66). 
Furthermore, when scientists at Amgen 
(Thousand Oaks, Calif) tried to repli-
cate 53 landmark studies in the basic 
science of cancer, they were able to re-
produce the original results of just six 
(67). These issues have become serious 
enough that editors from more than 30 
high-impact-factor biomedical journals 
have united to impose common stan-
dards for statistical testing and to im-
prove access to raw data (68,69). The 
standards have been adopted by the 
National Institutes of Health (8,70). Al-
though these standards were generated 
to address preclinical data, they can 
be applied across all areas of research 
and can provide a roadmap for navi-
gating the complex issues associated 
with acquisition and analysis of high-
dimensional data inherent in radiomics. 
Superb reporting guidelines for clinical 

better-informed decisions about where 
to biopsy.

Challenges for Radiomics

In this article, we have already discussed 
technical challenges to the individual 
steps in the process of radiomics. We 
will now we present broader concerns 
that arise from radiomics as a whole.

Reproducibility
Radiomics is a young discipline. As 
with therapies motivated by molecular 
biology, radiomics offers great potential 
to accelerate precision medicine. How-
ever, it is also possible that radiomics 
will undergo the same slow progress 
already experienced with molecular 
biology–based systemic diagnostic tech-
niques and therapies. That slow pro-
gress can be attributed to a number of 
causes, including technical complexity, 
poor study design (in particular, mix-
ing hypothesis generation with hypo-
thesis testing) and overfitting of data, 

of dynamic contrast-enhanced MR im-
aging could help predict response to 
neoadjuvant chemotherapy before its 
initiation (59).

Deciding Where to Biopsy or Resect
It is axiomatic that images can be used 
to guide biopsy. It is our opinion that 
quantitative analyses of regionally dis-
tinct radiomic features can also pre-
cisely inform biopsy; that is, they can be 
used to identify a priori those locations 
within complex tumors that are most 
likely to contain important diagnostic, 
prognostic, or predictive information. 
This has already been shown with the 
use of PET to overlay functional infor-
mation on CT or MR images to better 
guide biopsies in the abdomen and in 
patients with bone disease (60,61). 
Figures 4, 6, and 7 show recent exam-
ples of applications of radiomics to MR 
imaging, CT, and PET/CT in patients 
with prostate, bladder, and metastatic 
breast cancer, respectively, and show 
the potential of radiomics to enable 

Figure 5

Figure 5:  Attenuation gradients of lung CT images. Data are representative of patients with 
(left) and without (right) recurrence after lobectomy. Although differences in texture were visible 
on the CT images (top), the color-coded attenuation maps (bottom) more dramatically show 
intratumoral complexity. Maps were generated by separating the attenuation into quartiles, with 
hotter colors representing higher attenuation.
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studies have been developed by many 
organizations. An excellent overview 
is provided by the Equator network, 
which promotes the quality and trans-
parency of health research (65). Chal-
lenges with study design were also 
identified in the 2012 report Omics 
from the Institute of Medicine (8). A 
clear solution to these challenges is to 
establish benchmarks for the conduct 
of radiomics studies and for their re-
porting in the literature.

Big Data
In the era of precision medicine, giga-
bytes of data are collected for each pa-
tient, and radiomics data can provide 
a significant component of this. The 
exponential growth in the numbers of 
patients and the data elements being 
harvested from each is known collo-
quially as “big data”. Big data initiatives 
are aimed at drawing inferences from 
large data sets that are not derived 
from carefully controlled experiments. 
Although correlations among observa-
tions can be vast in number and easy 
to obtain, causality is much harder to 
assess and establish, partly because 
it is a vague and poorly specified con-
struct for complex systems. Across big 
data disciplines there are basic ques-
tions: Will access to massive data be a 
key to understanding the fundamental 
questions of basic and applied science? 
Or, does the vast increase in data con-
found analysis, produce computational 
bottlenecks, and decrease the ability 
to draw valid causal inferences? As in 
radiomics, the field of big data is in 
its early phases. The aforementioned 
questions were addressed in a meeting 
on big data that was sponsored by the 
National Academy of Sciences (71), and 
the radiomics field will benefit from this 
effort.

Data Sharing
The biggest challenge to establishing 
radiomics-based models as biomarkers 
to use in decision support is the shar-
ing of image data and metadata across 
multiple sites. Multisite trials are re-
quired to interrogate separate co-
horts of patients and to create data-
bases with sufficient size for statistical 

Figure 6

Figure 6:  Application of texture analysis to CT images of bladder cancer. On original contrast-enhanced CT 
image of bladder cancer (top left), a high-attenuation lesion is clearly visible, and there is some evidence of 
intratumoral heterogeneity. However, when the texture features of energy (top right), entropy (bottom left), and 
homogeneity (bottom right) are displayed over the source image, intratumoral heterogeneity can be readily 
appreciated. Other studies have shown that higher intratumoral heterogeneity is associated with a worse prognosis.

Figure 7

Figure 7:  Application of radiomics to FDG-avid lymph nodes on PET and CT images in a patient with 
metastatic breast cancer. Left: Standard PET image shows there is little evidence of intranodal heterogeneity. 
Right: CT image shows calculation and display of the Haralick co-occurrence statistics with a 9 3 9 3 9 
voxel matrix and clearly reveals some areas with lower co-occurrence (red), which have higher regional 
heterogeneity and would therefore be considered more suspicious for cancer. The results were used to select 
lymph nodes for image-informed biopsy.
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solution is to capture data prospectively 
at the point of care. Hence, we envision 
a transition from classic radiology to a 
new paradigm in which the radiologist 
actively participates in the curation of 
quantitative image databases. Collec-
tion of high-quality image data requires 
sophisticated content expertise to iden-
tity and circumscribe (with computer 
assistance) and annotate (with a stan-
dardized and mineable lexicon) the vol-
umes of interest. To make high-quality 
data curation a reality, we must first 
convince the imaging practitioners of 
its value, and we must streamline the 
process so it can occur within the lim-
itations of a clinical practice. By play-
ing a crucial role in data curation and 
analysis of big data, radiologists and 
physicians alike will be able to make 
radiomics an important, valuable new 
dimension of their field.

Health Informatics
To be of maximal value, the various 
kinds of high-quality data that are ob-
tained during the work-up and monitor-
ing of individual patients must interface 
with each other. This is well recog-
nized, and most large medical centers 
are now investing in appropriate elec-
tronic medical record systems to make 
patient data accessible in a mineable 
form. Currently, radiomic data are typ-
ically not incorporated as part of this 
data stream; however, this is changing 
with the adoption of structured radiol-
ogy reporting. The challenge going for-
ward will be to capture radiomic data 
as part of the structured report.

Data Sharing
As discussed previously, the quality of 
classifier models is limited by the size 
of the data sets used to create them. 
Even if one institution were to capture 
all of its radiomic data prospectively, it 
would be years before sufficient power 
could be generated. Additionally, these 
data are a moving target, as there are 
continuous improvements in medical 
image acquisition. Differences in im-
age acquisition and reconstruction are 
covariates that must be incorporated in 
the mining of quantitative image data 
and therefore increase the amount of 

in which standards are lacking. It will 
be necessary to provide standards for 
all aspects of radiomics if the field is to 
realize its potential.

Radiomics: The Next Frontier in Clinical 
Decision Making

Our vision for radiomics is optimistic 
and clear. In the foreseeable future, 
we expect that data gleaned from ra-
diologic examinations throughout the 
world will be converted into quantita-
tive feature data and that these data 
will be interfaced with knowledge ba-
ses to improve diagnostic accuracy and 
predictive power for decision support. 
For this to have high penetrance in 
clinical settings, practitioners must be 
given an incentive to participate in the 
process. How do we get there from 
here? Clearly, part of the solution in-
volves addressing the aforementioned 
challenges of standardization and data 
sharing. In addition, the data must be 
collected prospectively. There are cen-
tral and critical roles for radiologists 
to play in identifying and curating data 
at the front end and in applying classi-
fier models at the user end to improve 
diagnostic and prognostic accuracy. In 
between, this will be a multidisciplinary 
effort involving information technolo-
gists, bioinformaticists, statisticians, 
and treating physicians. Here, we out-
line what needs to be done at the local 
and transnational levels in short- and 
intermediate-term time frames.

Curation of High-Quality Data by 
Radiologists
In current general practice, radiologic 
examinations are qualitatively evalu-
ated, and the generated reports often 
do not use a standard lexicon, despite a 
number of efforts to embrace a uniform 
lexicon, such as RadLex® (74). (If used 
routinely, annotations with RadLex®-
type image features could greatly con-
tribute to mineable databases [75,76].) 
Furthermore, once images are ar-
chived, they are rarely reaccessed. 
Although massive image repositories 
exist, they are virtually inaccessible 
for curation because of the limitations 
described previously. The only viable 

power. Data sharing is a common chal-
lenge in all biomedical research, and 
it must overcome cultural, administra-
tive, regulatory, and personal issues 
(72). Notably, communities like the 
Children’s Oncology Group have es-
tablished a history and culture of data 
sharing (73) and therefore are in a 
prime position to expand their efforts 
to include radiomic image analysis. 
Data sharing in radiomics is especially 
daunting because shared data must in-
clude images and sharing must be in 
compliance with the Health Insurance 
Portability and Accountability Act, 
as a substantial amount of personal 
health information is needed to build 
models of sufficient complexity. Solu-
tions to this challenge are many and 
can include: (a) large centralized data 
repositories, such as The Cancer Imag-
ing Archive and The Cancer Genome 
Atlas, wherein access can be limited 
to institutional review board–approved 
users or data can be stripped of per-
sonal health information; (b) federated 
approaches, wherein each institution 
maintains their individual data, and 
query models are sent to extract the 
relevant metadata; or (c) federated ap-
proaches, wherein the institutions are 
all accessible by an honest broker (ie, 
a superuser with multisite institutional 
review board–approved access). No 
matter which solution is applied, the 
infrastructure costs can be substantial.

Standards
While standards exist or are being de-
veloped in many of the areas already 
mentioned in this article, there are still 
gaps. For example, while the value of 
test-retest subject or patient image 
studies is well recognized, many of 
the published studies have small sam-
ple sizes. Ideally, these studies should 
be combined to provide a meta-anal-
ysis; however, as noted earlier, there 
are often problems with how results 
are reported. While there are guide-
lines for reporting, none yet exist for 
the reporting of quantitative imaging 
results, let alone for the reporting of 
much more complex radiomics results. 
Testing of the core technology of tex-
ture analysis also is among the areas 
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Radiomics Resources
Readers may find the following resources 
helpful: QIN, http://imaging.cancer.gov/
programsandresources/specializedinitia-
tives/qin; QIBA, http://rsna.org/QIBA.
aspx; The Cancer Imaging Archive, 
http://www.cancerimagingarchive.net; 
Food and Drug Administration CAD 
Guidance, http://www.fda.gov/Regula-
toryInformation/Guidances/ucm187249.
htm; and National Institutes of Health 
Principles and Standards of Research 
Reporting, http://www.nih.gov/about/
reporting-preclinical-research.htm.
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